
The Microscope Device Abstraction Layer of Micro-Manager
Nenad Amodaj1, Henry Pinkard2, Nick Anthony3 and Nico Stuurman4

1Luminous Point, LLC
2Dept. Of Electrical Engineering and Computer Sci-
ences, University of California Berkeley
3Dept. Of Biomedical Engineering Northwestern Uni-
versity, Evanston, IL
4Dept. of Cell. Pharm., University of California San
Francisco/Howard Hughes Medical Institute

Introduction
Micro-Manager (also named µManager, https://micro-
manager.org)[1, 2] is open-source software for opera-
tion of automated microscopes. The Micro-Manager
application is used by thousands of laboratories
world-wide, mainly for routine applications, but
also for more creative, complicated approaches (e.g.
[3, 4, 5, 6, 7, 8, 9, 10, 11, 12], which became easier
with the development of Pycro-Manager, a bridge to
the Python computing environment [13]. The Micro-
Manager application contains a GUI that communi-
cates with microscope equipment through a device
abstraction layer. This device abstraction layer can
also be used outside of the Micro-Manager applica-
tion and was designed about 15 years ago. Because
of the great number of devices now supported by this
software layer and the tantalizing potential to use
this code under many more conditions, we will review
here the original software design and identify possible
improvements to enable its future use under a wider
variety of circumstances.

The device abstraction layer was made so that anyone
can create a "Device Adapter" to support any kind of
microscopy related hardware device and make it avail-
able in the Micro-Manager application domain. We
chose the term "Device Adapter" for Micro-Manager

device modules and reserved "driver" for manufac-
turers’ native device software components. A Micro-
Manager Device Adapter performs normalization of
various software commands specific to a set of de-
vices (often from one manufacturer), so they conform
to Micro-Manager’s conceptual model of the micro-
scope. Through the contributions of many people, in
both academia and industry, hundreds of such Device
Adapters now exist, operating a very large set of mi-
croscope hardware components. This rich resource
can be used outside of the Micro-Manager GUI ap-
plication and potentially facilitate operation of many
custom-built microscopes.

To help ourselves and others think about the most
efficient path towards easily reusable components for
microscope software control, we discuss in detail the
microscope model that implicitly emerges from the
application programming interfaces (APIs): “MMDe-
vice”, a particular hardware device, and “MMCore”, a
single core component that facilitates interoperability
between a collection of such devices and serves as
the primary access point for device interaction. In
designing these APIs we deliberately left some details
unspecified to provide flexibility for future develop-
ment and customization, but made the model specific
enough for microscopy so that resulting scripts and
applications end up being simple yet expressive.

The foundations of the Micro-Manager device inter-
face were developed in 2005 and 2006, and reflect
the paradigm of the "motorized microscope." Usually,
this is a computer-controlled system consisting of a
microscope stand (with built-in reflector changers,
focus drive, etc..) equipped with cameras, stages,
light sources, and various other peripherals attached.
Both deficiencies and virtues of the Micro-Manager
device interface originate from this tradeoff between

1

https://micro-manager.org
https://micro-manager.org


flexibility and domain efficiency.

In terms of practical use, the intent was to provide
the following workflow for a programmer tasked to
produce a Device Adapter for a new hardware device:

1. Install the device manufacturer’s drivers (if
required), software development kit (SDK),
and any other software/hardware needed
for the particular hardware device being
worked with.

2. Take the Micro-Manager interface definition
(two C++ header files) and a few utility
classes (optional) and implement all func-
tions required by the interface. The entire
MMDevice package is small, lightweight,
and located in a single directory (MMDe-
vice).

3. Write code to control the new device and
build a run-time module (a ".dll", ".dylib",
or “.so” depending on the Operating Sys-
tem). The final result is a dynamically
linked library file that conforms to Micro-
Manager’s API.

4. Install the Micro-Manager application from
the Micro-Manager web site (https://micro-
manager.org). Copy the new dynamic li-
brary file to the Micro-Manager installation
directory and do final testing with the full
software.

5. (Optional, but highly encouraged:) Con-
tribute the Device Adapter source code
to the Micro-Manager repository under an
Open Source license so that it can be in-
cluded in future binary distributions of the
software.

Terminology
Module – A run-time software component located in
a single file, usually an executable or dynamic library

Device Adapter – A C++ class implementing the
MMDevice interface, that converts a device manufac-
turer’s command set (or API) to Micro-Manager’s

device interface API

Driver – One or more software components provided
by the device manufacturer to enable other software
such as Micro-Manager to control the device (some
devices do not require drivers)

Library – A dynamic library (e.g., .dll, .dylib or
.so) conforming to Micro-Manager’s module API and
naming convention that contains one or more Device
Adapters

Core Interface - The interface defining the core func-
tionality of Micro-Manager. MMCore is the default
(and only) implementation of the Core interface.

High-level Overview
Building blocks
Although MMCore is implemented in C++, its inter-
face only uses C-compatible data types and can there-
fore be relatively easily used from other languages. To
automate wrapping MMCore, we have been using the
development tool “SWIG” (http://www.swig.org/ ),
and export to Java (MMCoreJ_wrap), Python 2
(MMCorePy_wrap), and Python 3 (in the separate
github-hosted project “pymmcore”). With some ef-
fort, wrapping to other languages using Swig can be
accomplished.

The Micro-Manager user interface - being a plugin to
ImageJ [14] written in Java - uses the Java interface
to MMCore. Other Java compatible applications,
such as Matlab, can use this same interface (and have
access to the Micro-Manager Java API, which is not
discussed further in this manuscript).

Initial Software Design Requirements
• To be cross-platform (Win-

dows/Mac/Linux)

• A single layer (MMCore) to be used as an
abstraction for a motorized microscope, i.e.
strict separation of an API facing the user,
and an API facing the devices

2

https://micro-manager.org
https://micro-manager.org
http://www.swig.org/


Figure 1: Micro-Manager software components
This diagram shows the relationship between Micro-Manager software components. At the very top sits the
user application, the middle layer (MMCore) implements the model of the generic motorized microscope,
through the “MMCore API”. The microscope model layer communicates with devices through the
“MMDevice API”.

3



• Use of native C++ environment with C
bindings for device interfacing to make all
adapters and MMCore usable from any pro-
gramming environment

• Allow drop-in run-time linking of all device
adapters, i.e. copying a separately com-
piled device adapter binary into the correct
location should work transparently

• All applications/scripts developed using
MMCore API and developed on one mi-
croscope system should run without any
changes on another microscope system
(with different hardware components), as
long as it has equivalent capabilities

• MMCore and devices should provide full
run-time discovery of features and capabili-
ties.

• It should be possible (and desirable) to
write application code with absolutely zero
a priori knowledge of the underlying hard-
ware system

Threading model
To facilitate writing client applications, optimal oper-
ation of the microscope hardware should be possible
using a single threaded application. This puts some
of the burden of optimal operation to the Device
Adapters. Most functions in Device Adapters (with
one notable exception, the “snap” function of the
camera that should block for the duration of the ex-
posure) are expected to be non-blocking and return
as fast as possible. Depending on the specific driver
this may necessitate operating a separate thread for
device communication within the adapter (even when
communicating with a device through a serial port,
round trip communication can easily take tens of mil-
liseconds, which preferably should not be taking place
on the calling thread).

Because of the complexities of writing multi-threaded
code, this is not the case in many of the current device
adapters, potentially slowing down the application
software. Future improvements can include moving

the complexities of multi-threaded coding into the
core to simplify writing optimally performing Device
Adapters.

Device Interface
MMDevice is an abstract interface representing a dis-
tinct conceptual hardware component. The relation-
ship between actual physical devices and MMDevice
interfaces is not necessarily one to one. A single piece
of hardware can be represented in Micro-Manager as
multiple MMDevice interfaces (for instance, a Nikon
TI microscope will appear as a nosepiece, reflector
turret, z-drive, shutter, etc.., and conversely, multiple
hardware components can be aggregated into a sin-
gle MMDevice (for instance, multiple shutters can be
combined into a single “multi-shutter” device). The
key is to choose the right set of available abstractions
and device types that best represents each particu-
lar hardware component within the Micro-Manager
environment.

Each specific device interface such as Camera, Shutter,
etc.. is derived from the base MMDevice interface.
MMDevice defines methods that all devices must im-
plement. We will consider each group of API methods
separately below.

The currently supported Device types which extend
the functionality of a generic Device are listed below:

• CameraDevice: A device that produces im-
age data. Images are assumed to be 2-
dimensional but may be multi-component
(e.g. RGB) as well as multi-channel

• ShutterDevice: A device which can be set
open or closed, most likely to block a light
path

• StateDevice: A device which may be set to
any one setting from a finite set of possible
states. Examples include filter wheels and
objective turrets

• StageDevice: A device for which a position
can be set along a single continuous axis.

4



The API assumes that units of the position
are expressed in microns.

• XYStageDevice: A device similar to the
StageDevice except with 2 independent axes
(X and Y)

• SerialDevice: A device representing a com-
puter communication port such as a serial
port

• AutoFocusDevice: A device control hard-
ware to automatically focus an image or
evaluate image sharpness and provide a fo-
cus score

• ImageProcessorDevice: A software device
that takes images in, performs an operation
on the image and returns the result

• SignalIODevice: A device that can measure
and/or output a signal, e.g. a DAC or ADC
on a microcontroller

• MagnifierDevice: A device whose setting
may result in changes to pixel size of a
camera

• SLMDevice: Spatial Light Modulator De-
vice, a device that can display an "image"
(i.e. has a (2D) array of elements that can
be set to differ)

• HubDevice: A device which acts as a central
hub for multiple peripheral devices. This is
useful with multiple devices share a resource
such as a serial port

• GalvoDevice: A device that can point to a
specific 2D location

The device interface is designed to use only primitive
types and return integer error codes rather than use
C++ exceptions in order to allow packaging into sep-
arate dll units and guarantee correct operation across
dll boundaries on all operating systems and compilers.
There are a few exceptions to this rule where pointers
to classes pass through the API as "naked" pointers.
If we pass a pointer to a non-primitive type we must
rely on static casting, and not on run-time type iden-

tification (RTTI) since RTTI is a compiler-dependent
feature.

Basic
Implementation of these methods is required for all
implementations of the MMDevice interface. They
constitute the minimum functionality required in or-
der to interface with MMCore.

int Initialize()

int Shutdown()

DeviceType GetType()

void GetName(char* name)

void SetCallback(Core* callback)

bool GetErrorText(int errorCode, char* er-
rMessage)

void SetLabel(const char* label)

void GetLabel(char* name)

Initialize() and Shutdown() are deliberately sep-
arated from the constructor and destructor of the
class so that actual connection and any hardware ini-
tialization can be controlled more effectively by the
calling program. A Device object is expected to be
able to handle multiple cycles of Initialize/Shutdown
in the same instance, i.e. without having to destroy
and create a new object. This helps with automatic
configuration and interactive configuration building.

The GetType() function returns an enumeration
representing the actual type of the device (Camera,
Shutter, Stage, etc.) which can map into an integer
constant in C/C++. This is needed in order to treat
devices polymorphically enabling classification of the
device into a more specific device subgroup which may
be subject to special handling in a given application.

The GetName() function returns a string to be used
to refer to the Device Adapter, something like a “class
name”. This is not to be confused with “label” which
refers to a specific instance, and is used by the parent
application (and human user) to keep track of which
device is which.

5



MMCore is the default container for devices, but
any other application that implements the Core inter-
face could take that role. MMCore passes its handle
(pointer) using the SetCallback() method, provid-
ing a way for a Device Adapter to communicate with
the Core. It is possible for a container to pass “null”
or not call this method at all, in which case Devices
should be able to work normally or degrade gracefully
(but face a significant loss in capabilities).

See more about the MMCore Callback interface in
the dedicated section below. The MMCore Callback
API is exclusively for devices to call back into MM-
Core, whereas MMCore API is a top-level interface
for applications and scripts.

Property
unsigned GetNumberOfProperties()

int GetProperty(const char* name, char*
value)

int SetProperty(const char* name, const
char* value)

bool HasProperty(const char* name)

bool GetPropertyName(unsigned idx, char*
name)

int GetPropertyReadOnly(const char* name,
bool& readOnly)

int GetPropertyInitStatus(const char* name,
bool& preInit)

int HasPropertyLimits(const char* name,
bool& hasLimits)

int GetPropertyLowerLimit(const char*
name, double& lowLimit)

int GetPropertyUpperLimit(const char*
name, double& hiLimit)

int GetPropertyType(const char* name,
MM::PropertyType& pt)

unsigned GetNumberOfPropertyValues(const
char* propertyName)

bool GetPropertyValueAt(const char* prop-
ertyName, unsigned index, char* value)

The Property part of the API is intended for dynamic
discovery and manipulation of an array of name-value
pairs (“properties”). Each device adapter defines the
set of properties it exposes to the container, outside
code can not add or remove properties.

We can discover how many properties there are at
any time, their names, value types, value limits, and
allowed values (if it is a discrete range). In theory,
a device can choose to dynamically add and remove
properties, there is no guarantee that a set of prop-
erties discovered at any time will remain in effect
indefinitely. The container code, therefore, must be
structured defensively. However, it is considered bad
practice to change properties ad-hoc during normal
operation.

A typical use case for dynamic property management
is during the Initialize() routine described in the
previous section. For example, let’s say we instantiate
a Camera device object. At that point the adapter
did not establish communication with the hardware
yet, so we don’t know the actual capabilities of the
specific camera model. Then we call Initialize() and
that’s where the actual connection happens. Inside
this routine, we query the camera and discover its
capabilities, e.g. which readout rates, resolutions and
pixel types it supports, and so on. At that same place,
we dynamically create properties to accommodate
camera capabilities. Once the Initialize() routine is
finished we will have a fully functional device exposing
a list of properties based on the actual camera model
that is currently connected to the software.

Generally, it is considered good practice to not change
the list of available properties after the Initialize()
routine is completed. There are some exceptions to
this rule, e.g. when setting specific properties to spe-
cific values might change the range of allowed values
for other properties. Several device interfaces do not
fit neatly with this concept (for instance, several cam-
era APIs expose different sets of properties depending
on the setting of another property). Also, it is some-
times needed that properties are set in a certain order,
whereas the Micro-Manage API requires that prop-

6



erties can be set in any order. We do believe that
careful coding of a device adapter can work around
such issues, but are open to ideas for improvement.

The interface could have been made much simpler if
we followed the object-oriented paradigm and created
a Property class. However, we are forced to keep the
interface “primitive” as discussed at the beginning of
the Device Interface section, therefore the verbosity
of the property API.

One interesting aspect of the importance of Initial-
ize() routine is that it becomes important to know
which properties can be used before the device is ini-
tialized. Why do we want to call any functions or
set any properties on a device that is not initialized?
Because often there are some parameters that must
be set before we can even attempt to initialize the
device. For example, we may have to assign a serial
(COM) port before a device that connects through a
serial port can be initialized, and so on. GetProper-
tyInitStatus() tells us whether a specific property
has to be set before attempting to Initialize().

Properties can be “sequenced”, i.e. a sequence of
property states can be uploaded to the device, and
once the sequence is started, the device will transition
through these states driven by a trigger (which in
practice, is most often a TTL signal on the device
input). For more information, see the “Sequencing
and Hardware synchronization” section below.

Busy
bool Busy()

double GetDelayMs()

void SetDelayMs(double delay)

bool UsesDelay()

Devices use the “busy” flag to signal that they are
doing something significant. By testing this flag, client
programs can discover whether some critical operation
is in progress. For example, the stage would set a
busy flag to true when it is moving and false when
it is at rest. The client program can poll this flag
to find out when the stage stopped moving, in order

to proceed to the next operation such as capturing
images.

Whenever possible, time consuming operations (such
as moving a stage) should not be blocking the exe-
cution thread. When the client is operating multiple
devices simultaneously (for instance setting the posi-
tions of two filter wheels, a reflector changer, and a Z
drive), it should be possible to send the commands to
start moving from a single thread, then poll using the
“busy” flag, and continue once all devices report to be
no longer busy. Depending on the device interface, it
may be optimal for the device adapter to use a second
thread to communicate with the device in order to
avoid blocking the client thread.

The “Delay” functions historically were intended to
be an alternative mechanism to “discover” when a
device was no longer busy. However, in practice,
these functions are exclusively used by devices that
either do not know by themselves when their action
is complete (for instance, for a filter wheel device
that can only send a command to move to a certain
position, but has no sensors to read-out its actual
position to know when it is done moving), or by
devices that themselves report to be no longer busy
prematurely (for instance, an XY stage that jiggles
around its target even though its controller reports
that the destination has been reached), and setting a
delay allows the user to overcome this problem. Thus,
the “Delay” itself needs to be completely implemented
by the Device Adapter code by noting a time stamp
when the action starts (or in case an extra delay is
needed, by noting the time stamp when the controller
thinks the device is no longer Busy), and then in the
Busy function call using this time stamp, the current
time and the delay to determine whether the Busy
function should return true or false.

Device Discovery
bool SupportsDeviceDetection(void)

MM::DeviceDetectionStatus DetectDe-
vice(void)

Device detection is used to find out if the device
is actually connected without running a full initial-

7



ization. It is most often used to detect the se-
rial port to which the device is connected. If de-
vice detection is supported, a pre-initialization prop-
erty (named g_Keyword_Port, defined as “Port” in
MMDevice/MMDeviceConstants.h) containing the
name of a communication port will be set, and the
DetectDevice function will be executed for each avail-
able port. The Device adapter can use this function
to set the appropriate properties of the port (for in-
stance, baud rate of a serial port). Although this
feature is helpful to the user (it can greatly facilitate
hardware setup), it can also lead to problems by send-
ing commands to unrelated devices that may stop
communicating altogether.

Device Hierarchy
void SetParentID(const char* parentId)

void GetParentID(char* parentID)

Often, a single physical device contains multiple logi-
cal devices. For instance, a physical microscope may
contain a shutter (Shutter Device), reflector changer
(State Device), focus drive (Stage Device), and ob-
jective changer (State Device), all behind the same
communication port. In such cases, it is desired to cre-
ate a logical “Hub Device”. Hub Devices can discover
attached devices. The relation between the hub and
detected (child) devices is maintained by the child
devices (who maintain knowledge of the parent Hub
device) and the Core container (GetParentHub()).

Sequencing and Hardware Synchro-
nization
Due to latencies in software command execution, and
communication with external devices, it is very diffi-
cult or impossible to achieve microsecond time-scale
synchronization between devices in software alone.
Such synchronization is possible when devices can re-
spond (i.e. change position or state, or start an action)
to TTL signals provided by, for instance, the cam-
era (to signal sensor exposure), or an external clock
(such as a National Instruments DAQ board or an
Arduino microcontroller). Micro-Manager facilitates
such work-flows using the concept of “Sequences”.

A sequence is a finite, discrete sequence of states
or actions on a particular device, each of which can
optionally take arguments and data and produce data.
For example, a sequence on a camera will result in the
sequential exposure and readout of multiple images,
and will place those images into a buffer. A Z-stage
will take a position as an argument for each state in
the sequence. A spatial light modulator will take a
buffer (usually an image) to describe the pattern it
will display at each step of the sequence

An important distinction is whether sequences will be
triggered internally or externally, a distinction that
is equivalent to “leader” vs. “follower” devices. For
example, cameras can be asked to deliver a sequence
of images, which will most often be accomplished
by putting the camera into “internal trigger mode”
so that it uses an internal clock to guarantee exact
exposure times and minimal dead-time in between ex-
posures. Most cameras in this mode will also produce
TTL pulses at defined times relative to the start of
exposure, so that follower devices can be synchronized
to this clock. Alternatively, the camera can be set
in “external trigger mode”, in which it waits for an
external trigger to start exposure of a new image.

The sequencing API contains functions checking
whether a device is sequenceable, loading states of the
sequence into the device, and starting the sequence.
For instance, a (Z) stage can signal that it can re-
spond to TTL signals using its “int IsStageSequence-
able(bool& isSequenceable)” function. A sequence
of positions is uploaded using the “AddToStageSe-
quence(double position)” and “SendStageSequence()”
functions. The Stage will start cycling through these
positions, driven by the external TTL signal after the
“StartStageSequence()” is called. Likewise, XY stages,
DAs (analog output devices), and SLMs (spatial light
modulator or projectors) have similar sequencing in-
terfaces. Moreover, any property of any device can
declare that it too can be sequenced. The interface
is similar (a list of property values is created, sent to
the device, and the sequence is started).

This sequencing interface enables multiple hardware
configurations (camera as “leader”, or external device
as “leader”), and the code executing image acquisition

8



can query the hardware and figure out how to most
optimally execute an acquisition sequence. However,
it only works for devices that respond more or less in-
stantaneously. Providing a mechanism for the device
to provide feedback how long a transition will take
would be a useful addition to the interface. Currently,
there is no abstract notion of a device that generates
the hardware timing pulses (TTLs). Such an abstrac-
tion of a hardware clock could also be beneficial.

Library Interface
void InitializeModuleData()

MM::Device* CreateDevice(const char*
name)

void DeleteDevice(MM::Device* pDevice)

long GetModuleVersion()

long GetDeviceInterfaceVersion()

unsigned GetNumberOfDevices()

bool GetDeviceName(unsigned deviceIndex,
char* name, unsigned bufferLength)

bool GetDeviceType(const char* device-
Name, int* type)

bool GetDeviceDescription(const char* devi-
ceName, char* name, unsigned bufferLength)

void RegisterDevice(const char* deviceName,
MM::DeviceType deviceType, const char* de-
scription)

Each dynamically loaded library recognized by MM-
Core (i.e. files whose name starts with “mmgr_dal_”
and with the extension “.dll”, “.dylib”, or “.so”) needs
to implement this interface. Most of these func-
tions are implemented by boiler-plate code that, how-
ever, the device adapter must implement Initial-
izeModuleData() in which it should call Regis-
terDevice(deviceName, deviceType, descrip-
tion) for all devices it supports, which lets MM-
Core auto-discover the available devices. In addition,
the functions CreateDevice(const char* name)

and DeleteDevice(MM::Device* pDevice) have
to be implemented.

Device Types
The enumeration type declaration in MMDeviceCon-
stants.h lists all currently available device types: Cam-
eraDevice, ShutterDevice, StateDevice, StageDevice,
XYStageDevice, SerialDevice, GenericDevice, Aut-
oFocusDevice, ImageProcessorDevice, SignalIODe-
vice, MagnifierDevice, SLMDevice, HubDevice, and
GalvoDevice.

Each device type provides a functional API - in ad-
dition to the basic MMDevice API - that consists of
two parts:

1. Essential API, representing an abstraction
for the common functionality associated
with a particular device type. For example,
a camera must implement a SnapImage()
method while a translation stage must im-
plement a SetPositionUm(double posi-
tion) method.

2. Properties API, i.e any number of property-
value pairs. This is how any particular
device can extend its functionality beyond
the Essential API. There are no mandatory
properties and there is no minimum number
of properties, 0 properties are OK as well
as 1000 properties.

GenericDevice
This is a device with no essential API and it provides
useful functionality only through its list of properties.

CameraDevice
Cameras are sensors that provide the computer with a
2-dimensional array of values representing light inten-
sity, with a specified number of bytes (e.g. 1 or 2) per
each pixel. Cameras can operate as a photo-camera,
taking single snapshots, or as a movie camera, gen-
erating uninterrupted streams of images. The latter

9



operation mode is always much faster when sequences
of images are desired.

Synchronization of camera exposure with other events
(such as opening and closing of the shutter controlling
the light source illuminating the sample) is extremely
important. To this end, the camera device adapter
implements the function SnapImage() that should
start the exposure as soon as possible, block for
the duration of the exposure, and then return as
soon as possible. Often, read-out and transfer of
data to the computer takes a significant amount of
time, hence this process should not take place in
the SnapImage() call, but in GetImageBuffer()
(issues with synchronization regularly arise when this
is not implemented correctly in the Device Adapter
code). The GetImageBuffer() function returns a
pointer to the image data. The size of this buffer will
be returned in the function GetImageBufferSize(),
which in turn should be consistent with values
returned by GetImageWidth(), GetImage-
Height(), and GetImageBytesPerPixel(). The
camera should never change the size of the pixel
buffer on its own. In other words, the buffer size can
change only when camera features change (such as
binning, pixel type, region of interest etc.). Color
(RGB) cameras with 8 bits per color (16 bit per
color is currently not fully supported) will return
4 for GetImageBytesPerPixel(). They also will
need to report to have 4 components in the function
GetNumberOfComponents(). Color images
on little endian platforms (most of the current
computers) should be organized as BGRA8888 (see:
https://en.wikipedia.org/wiki/RGBA_color_model).
Some special devices can deliver multiple images
simultaneously. These are called “Channels” and
their number can be found through the function
GetNumberOfChannels() (1 for most cameras).
Image data for each of the channels are retrieved
with the function GetImageBuffer(unsigned
channelNr).

The function StartSequenceAcquisition (double
intervalMs) starts a sequence of images from the
camera (i.e., the “movie camera” mode). The pa-
rameter “intervalMs” has not been implemented
by any of the cameras supported by Micro-Manager

and should be ignored. In most cases, the camera
will switch to an internal trigger mode, and the in-
terval between images will be highly reproducible
(somewhat higher than the exposure time, depending
on how fast the sensor is ready for the next expo-
sure). The default implementation is to call Start-
SequenceAcquisition(long numImages, double
interval_ms, bool stopOnOverflow) with nu-
mImages set to the maximum possible number, and
stopOnOverflow to false. Images coming from the
camera driver are to be copied by the Device Adapter
code into the Core’s circular buffer using the Core
Callback function InsertImage. When this function
indicates that the circular buffer overflowed, it is the
Device Adapter’s responsibility to either stop the se-
quence (when stopOnOverflow is true), or to clear
the circular buffer and continue. Metadata can op-
tionally be attached to the images before insertion in
the circular buffer. Cameras that have the capability
to use different exposures times during a sequence,
can use the ExposureSequence functions to do so.

Cameras can start exposure triggered either by a
signal from the computer (“software trigger”), an elec-
trical signal coming from another device (“external
trigger”), or an internal clock (“internal trigger”). Ex-
posure time can be set in software (and controlled by
an internal clock), or be determined by the duration
of the external signal. A sequence can be started by
an external trigger, or each image in a sequence can
be triggered by an external device. Currently, no API
exists for camera triggering. Trigger modes can be
set through properties, however, changes in trigger
behavior when switching between “Snap” and “Se-
quence” mode are not prescribed but left to the device
adapter code, leading to opportunities for unexpected
differences in behavior between cameras. Formaliz-
ing trigger modes in the API will be a worthwhile
extension.

In practice, camera device adapters are the most com-
plex device adapters to code, making the large num-
ber of supported cameras (currently 57 camera device
adapters) even more remarkable.

10

https://en.wikipedia.org/wiki/RGBA_color_model


ShutterDevice

A shutter device is a device with two states: open
and closed. It is mainly used for illumination con-
trol, but could be anywhere in the microscope’s light
path. Its interface is simple: SetOpen(bool open),
and GetOpen(bool& open). The interface func-
tion Fire(double deltaT), is implemented by so
few devices that it probably should be removed.

StateDevice

A state device is a device that at any point in
time is in a single state out of a list of possi-
ble states, like a filter wheel, an objective turret,
etc.. The interface contains functions to get and
set the state (GetPosition(long& pos), SetPosi-
tion(long pos)), to give states human readable labels
(SetPositionLabel(long pos, const char* label),
GetPositionLabel(long pos, char* label)), and
functions to make it possible to treat the state device
as a shutter (SetGateOpen(bool open), GetGa-
teOpen(bool& open)).

StageDevice

The stage device interface has functions to get
and set the position of the stage, both in mi-
crons (SetPositionUm(double pos), GetPosi-
tionUm(double& pos)) and in steps. The idea
here is that the stage has a “native” coordinate sys-
tem that it should translate to movement in mi-
crons. In addition, functions are provided to start
moving at a certain velocity (Move(double ve-
locity)) and to stop (Stop()). A given position
can be set to be the zero position for the device
adapter (SetAdapterOriginUm(double d)) or for
the device itself (SetOrigin()). There is no ex-
pectation whether movement is towards or away
from the sample, but the stage can report direc-
tionality (GetFocusDirection(FocusDirection&
direction)). Functions are provided to upload se-
quences of positions to the stage for fast, externally
triggered transitions between positions.

XYStageDevice
An XY stage is more or less the 2-dimensional version
of a stage device. However, the microscope system
expects a certain directionality of the stage. When
a sample is placed on the stage, it is expected that
the lowest numeric position is in the top left corner.
Since such directionality can not be expected to be
implemented natively in the stage or stage driver,
“translation” functions are provided in the Device-
Base.h file that translate the commands to set and
get positions in microns to positions in steps, given
three standardized properties signaling directionality.
Although this system works, it is difficult to under-
stand, places system-level responsibility in the device
adapter layer, and is incomplete, as it does not correct
for all possible transformations, and therefore should
be re-considered.

SerialDevice
Probably more aptly named “CommunicationDevice”,
but Serial Devices were the first to be implemented
and the architecture is geared towards serial communi-
cation ports. Functions are provided to send (ASCII)
characters to the port (SetCommand(const char*
command, const char* term)), to receive
characters (GetAnswer(char* txt, unsigned
maxChars, const char* term)), to send bi-
nary (Write(const unsigned char* buf, un-
signed long bufLen)) and to receive binary
(Read(unsigned char* buf, unsigned long bu-
fLen, unsigned long& charsRead)). Implemen-
tations are available for serial ports, certain USB
devices with libusb drivers, certain hidapi devices,
and TCP/IP ports. Port settings are communication
through standardized properties.

AutofocusDevice
Devices that automatically can find and/or maintain
optimal focus of the sample in the optical system.
These can either be devices that maintain focus con-
tinuously (often by measuring light invisible to the
detector and reflected near the sample), or devices
that can do a “one shot” focus. Autofocus devices

11



have become more and more widely used through
the last decade, and a clear generic interface to such
devices is difficult to design. The current interface
contains functions for continuously focussing devices
(SetContinuousFocusing(bool state), GetCon-
tinuousFocusing(bool& state), IsContinuous-
FocusLocked()), and functions for “one shot” de-
vices (FullFocus(), IncrementalFocus()) that can
be implemented by continuously focussing devices by
switching continuous focus on until a lock is achieved.
In addition, there are functions to get focus scores
and to get and set offsets, that are inspired by certain
autofocus devices, but that may better be abstracted
in other ways (for instance, the Nikon Perfect Fo-
cus Offset is implemented as a Stage Device - even
though its “positions” can not be related to microns-
that is easier to work with in the Micro-Manager user
interface).

Re-evaluation of the autofocus device interface will
be worthwhile.

ImageProcessorDevice
A software only device that can change image data.
It sole unique function is Process(unsigned char*
buffer, unsigned width, unsigned height, un-
signed byteDepth) that allows the device to change
the (pixel) data in the provided buffer. The idea is
that such ImageProcessorDevices can modify pixel
data with the C++ layer at high efficiency, before
sending them on to the upper software layers. The
concept never received much traction and few if any
such devices exist, and this device can probably be
removed or replaced by a better version.

SignalIODevice
Probably better named AnalogOutDevice, this de-
vice can set (SetSignal(double volts)) and get
(GetSignal(double& volts)) analog signals, where
it is unclear if the latter is supposed to provide the
output voltage that is actually applied, or is a way to
read input voltages. Like a StateDevice, the output
signal can be used as a shutter using the SetGa-
teOpen(bool open) and GetGateOPen(bool&

open) functions. In addition, output signals can be
sequenced, i.e. a series of values can be uploaded to
the device, and transition from one to the next can
be triggered with a TTL pulse.

We are planning to deprecate the SignalIODevice and
replace it with a dedicated device for analog output,
and a dedicated device for analog input. Both will
need careful thought and planning, for instance, the
analog output device interface may need to support
arbitrary waveforms, and the analog input device may
need to support reading data streams, which could
include the necessity to buffer such data streams.

MagnifierDevice
A magnifier device brings magnification into the opti-
cal system. Examples are motorized zoom lenses in
low mag microscopes. The amount of magnification
can be queried using the double GetMagnifica-
tion() function and can be used by a higher software
layer to calculate the current magnification/physical
pixel size.

SLMDevice
A Spatial Light Modulator (SLM) is essentially treated
as a display, i.e. a pixelated device onto which an
image can be written. Sequences of images can be
loaded into the device, and transitions between trig-
gered by an external signal. SLMs (displays) with an
internal light source can have an “exposure time”, i.e.
display of an image will only happen for the duration
of the exposure time.

GalvoDevice
The interface to a Galvo device is highly targeted
to the use of a galvo as a pointing device in Flu-
orescence Recovery After Photobleaching (FRAP)
experiments. The main functions “point” in a 2D
space (SetPosition(double x, double y), GetPo-
sition(double& x, double& y)). Integration with
a light source controller is (perhaps regretfully) as-
sumed, hence functions like PointAndFire(double
x, double y, double time_us), SetSpotInter-
val(double pulseInterval_us), and SetIllumina-

12



tionState(bool on). A number of functions to add
polygons are present. In general, this interface seems
highly targeted to one or a few specific implementa-
tions of a FRAP device, but does not offer all function-
ality associated with Galvo devices, such as the ability
to apply waveforms, and synchronize movement with
other signals. Careful re-design of the interface to
Galvo devices (or perhaps even only to a device for
analog voltage outputs) seems prudent.

HubDevice
A HubDevice is a container for several other devices
sharing certain infrastructure. For instance, an auto-
mated microscope, connected through a single USB
cable to the computer and containing filter turrets,
a Z-driver, objective turrets and other devices is an
example of a Hub device.

MMCore Callback interface
Communication from a device back to higher software
layers happens through the Core Callback object. A
pointer to the Core Callback object is provided imme-
diately after loading the Device Adapter. We discuss
the current implementation of this Core Callback ob-
ject in the Micro-Manage code base, but want to
stress that other implementations are possible, and
that Device Adapters should be able to operate with-
out this callback object. With the Core object, a
Device Adapter can:

• Log messages. The message will be added
to the applications logging output, main-
tained by a logging facility implemented in
MMCore

• Get pointers to other devices. These can
be used to send commands to other de-
vices, and are the basis for all the “Utili-
ties” devices that “translate” one type of
device into another type (such as the “Stat-
eDeviceShutter” device), or that combine
multiple devices into one (such as the “Mul-
tiCamera” device). Even though this func-
tionality was clearly needed, there is risk

in direct inter-device communication, and
it may be worthwhile to brainstorm about
other approaches.

• Send and receive commands through a (se-
rial) port device.

• Signal to upper software layers that some-
thing in the device (such as a property,
state, stage position, etc..) changed. These
callbacks are used in Micro-Manager to up-
date a cache of the state of the microscope,
and sent to the User Interface so that it can
reflect these changes. Often, these callbacks
run on their own thread (for instance, the
user pushes a button on the microscope that
results in a thread in the Device Adapter
receiving the state change, which then calls
back to the Core object), which needs to be
taken into account when coding the upper
layers of an application using such callbacks.

• Signal that a sequence acquisition is start-
ing or is finished. Since a (camera) se-
quence takes place in its own thread, the
calling code (MMCore) does not know when
the camera stops acquiring. The callback
AcqFinished(const Device* caller, int
statusCode) allows the core to take
needed actions (such as closing a shutter)
when the camera sequence ends. Likewise,
the function PrepareForAcq(const De-
vice* caller) is used to synchronice shutter
opening with sequence acquisition start.

• Manage and copy data into an image buffer
(relevant to camera devices only). The de-
vice can initialize and clear an image buffer,
as well as copy data into that buffer. In
the current implementation, this is a single
buffer, shared by all cameras. The MMDe-
vice API interface definition does not pre-
clude each camera to have its own data
buffer.

• Interact with groups of properties main-
tained in the MMCore object (see below).
The device adapter can apply a certain con-

13



figuration, and enquire about the current
configuration.

MMCore API and implementa-
tion
The “MMCore” object is the implementation of the
container for device adapters provided in Micro-
Manager. Other implementations are possible (al-
though we are not aware of any), here we discuss the
features provided by this particular implementation.

The MMCore object makes the MMCore API available
to higher level application code. The MMCore API
provides the following facilities:

Device management
MMCore can list all available device modules in multi-
ple given locations, as well as the devices contained in
these modules. Devices can be loaded and initialized,
shut-down and unloaded. Although loading and un-
loading of individual Device Adapters can be executed
through MMCore API calls, device loading is most
often specified in a configuration file that is read-in
and parsed by MMCore (see below).

“Pass-through” operations
Many functions pass-through directly to the corre-
sponding function in a Device Adapter. For instance,
MMCore function deviceBusy(const char* label)
looks up the device with name “label”, and calls the
function Busy() in the corresponding Device Adapter.
This intermediate software layer is a safety feature
(in principle only the core has pointers to the actual
instances of the device adapters), and makes it pos-
sible to implement some level of device and thread
synchronization. Currently, per-device thread locks
are implemented.

In some cases, optional software synchronization is
offered by MMCore. When the “AutoShutter” capa-
bility is enabled, the default shutter device will be
opened before camera exposure, and closed thereafter.

Core properties and default roles
MMCore defines a number of its own properties,
most of which concern themselves with default roles
for devices. For instance, when multiple camera
device adapters are loaded, the property “Core-
Camera” determines which of these available cam-
eras will be used when the snapImage() function
is called. Thus to snap an image with another cam-
era, the application code first needs to set the Core-
Camera property to the value of that other camera
before calling snapImage(). Some devices that fol-
low the “default” paradigm also can be called di-
rectly (for instance one can set “Core-Shutter” and
call setShutterOpen(bool state), or call setShut-
terOpen(const char* shutterLabel, bool state)
), but others (most notably “Camera”) can not (this
would be trivial to add if so desired).

Another important Core property is “TimeoutMs”,
that determines how long MMCore will wait for a de-
vice to stop being “Busy”, before returning a timeout
error.

Grouping of properties
Gettings and setting individual properties quickly be-
comes cumbersome. For a user it often makes sense
to assemble properties in a group. For instance, many
microscopes switch “channels” by changing the po-
sition of multiple filter wheels and reflector turrets.
The MMCore API names a group of device properties
a “Config”, and a group of configs a “ConfigGroup”
(where all Configs in a ConfigGroup usually contain
the same set of Properties albeit with different Prop-
erty values). These ConfigGroups map directly to the
“Configuration settings” “Group” and “Preset” table
in the main window of the Micro-Manager UI. Config-
Groups and Configs can be stored in a configuration
file.

Pixel sizes and affine transforms
A special type of ConfigGroup concerns itself with
pixel size (the size of the current’s camera pixel in
the sample plane), as well as the relationship be-
tween XY stage movement and the camera (as de-

14



fined by an affine transform). This information allows
the MMCore API to provide the current pixel size.
When asked (double getPixelSizeUm()) the MM-
Core API implementation will check if the current
state matches any of the PixelSize Config groups, and
provide the pixel size corrected for potential binning
of the camera and - when present - for magnification
by Magnifier devices in the system.

Caching
Asking Device Adapters repeatedly about the cur-
rent state of all their properties can induce unde-
sirable time-consuming communication between the
computer and device. MMCore therefore maintains
a cache with the last known state of all properties
it is aware of. The client application determines
whether to use information from the cache or to force
re-enquiring with the device (for instance: getPixel-
SizeUm(bool cached), getCurrentConfigFrom-
Cache(const char* groupName), getProper-
tyFromCache(const char* deviceLabel, const
char* propName)).

In some sense, the caching mechanism is redundant,
since certain Device Adapters provide caching them-
selves (for instance, the Zeiss, Nikon Ti and Ti2, and
Leica device adapters that maintain internal models
of the state of the microscope), so having yet a second
layer of caching is not optimal. This could potentially
be avoided by giving Device Adapters the capability
to signal whether they maintain their own cache of
the device’s state.

Logging
MMCore implements an asynchronous logging facility
that is available to MMCore itself, scripts/applications
using MMCore, and to the Device Adapters through
the Core Callback interface. Log output is written
to an application-specified file location. This log-
ging works very well, but it can be imagined that
applications already implementing their own logging
mechanism would want MMCore logging output to
be available through a callback function rather than
directly written to the file system.

Configurations
Microscope “configurations” are stored in a human-
readable configuration file. When MMCore is
instructed to parse such a file, it treats it as
instructions to change its state. For instance,
a line starting with the word “Device” will be
treated as an instruction to load the specified
device from the specified Device Adapter (“De-
vice,Dichroic,DemoCamera,DWheel” loads the device
DWheel from the Device Adapter “DemoCamera”
and makes it available under the name “Dichroic”).
Lines are executed in order, so the line “Prop-
erty,Core,Initialize,1” leads to initialization of all de-
vices that were loaded so far (a step that needs to
take place before properties from the device can be
used).

The keyword “Parent” is used to make devices that
are part of a “Hub” device aware of their “Hub” par-
ent. Labels can be assigned to the individual states of
State Devices (“Label,Dichroic,1,Q505LP” specifies
that position/state 1 of the State Device “Dichroic”
is labeled Q505LP”). ConfigGroups and Presets are
stored in the Configuration file (under keyword “Con-
figGroup”) as are pixel size configurations, pixel size,
and affine transforms relating camera orientation to
stage movement.

All actions taking place when MMCore parses a con-
figuration file could be executed through API function
calls, but it is more convenient to execute all tasks
needed to get the software ready to operate on a given
microscope system by parsing a single file.

Discussion
The large number of Device Adapters available in the
Micro-Manager ecosphere provides a unique opportu-
nity to create a truly universal software interface to
microscope components, greatly facilitating develop-
ment of software needed for new types of microscopes.
By reviewing the existing situation we have identified
several shortcomings of the current MMDevice API
as well as its implementation that could be readily ad-
dressed. We also recognized that the MMCore layer is

15



strongly targeted to the 2005 paradigm of a motorized
microscope. One interesting path forward could be
to modularize the MMCore layer further, splitting it
up into independent units, one each for device control
(i.e. a pure device abstraction layer), device synchro-
nization, data management and saving, configuration
storage, logging, metadata handling, and perhaps oth-
ers. This would allow an application developer to
pick and choose the relevant parts of MMCore, make
future development more manageable, yet maintain
compatibility with existing client applications that
use MMCore. We will continue discussion of these
ideas elsewhere.

References
[1] Arthur Edelstein, Nenad Amodaj, Karl Hoover,

Ron Vale, and Nico Stuurman. Computer control
of microscopes using µmanager. Curr Protoc Mol
Biol, Chapter 14:Unit14.20, 2010.

[2] Arthur D Edelstein, Mark A Tsuchida, Nenad
Amodaj, Henry Pinkard, Ronald D Vale, and
Nico Stuurman. Advanced methods of micro-
scope control using µmanager software. Journal
of Biological Methods, 1(2):10, 2014.

[3] Catherine B. Carbone, Ronald D. Vale, and Nico
Stuurman. An acquisition and analysis pipeline
for scanning angle interference microscopy. Na-
ture Methods, 13(11):897–898, 2016.

[4] Friedrich Walter Schenk, Nicolai Brill, Ulrich
Marx, Daniel Hardt, Niels König, and Robert
Schmitt. High-speed microscopy of continuously
moving cell culture vessels. Scientific Reports,
6:34038, 2016.

[5] Iliya Sigal, Margaret M. Koletar, Dene Ringuette,
Raanan Gad, Melanie Jeffrey, Peter L. Carlen,
Bojana Stefanovic, and Ofer Levi. Imaging brain
activity during seizures in freely behaving rats
using a miniature multi-modal imaging system.
Biomedical Optics Express, 7(9):3596, 2016.

[6] Zhicheng Long, Eileen Nugent, Avelino
Javer, Pietro Cicuta, Bianca Sclavi, Marco

Cosentino Lagomarsino, and Kevin D. Dorfman.
Microfluidic chemostat for measuring single cell
dynamics in bacteria. Lab on a Chip, 13(5):947,
2013.

[7] Zhengyi Yang, Peter Haslehurst, Suzanne Scott,
Nigel Emptage, and Kishan Dholakia. A com-
pact light-sheet microscope for the study of the
mammalian central nervous system. Scientific
Reports, 6:26317, 2016.

[8] Xiaowei Yan, Nico Stuurman, Susana A. Ribeiro,
Marvin E. Tanenbaum, Max A. Horlbeck,
Christina R. Liem, Marco Jost, Jonathan S.
Weissman, and Ronald D. Vale. High-content
imaging-based pooled CRISPR screens in mam-
malian cells. Journal of Cell Biology, 220, 2021.

[9] Bin Yang, Merlin Lange, Alfred Millett-Sikking,
Ahmet Can Solak, Shruthi Vijay Kumar, Wan-
peng Wang, Hirofumi Kobayashi, Matthew N.
McCarroll, Lachlan W. Whitehead, Reto P. Fi-
olka, Thomas B. Kornberg, Andrew G. York, and
Loic A. Royer. High-resolution, large imaging vol-
ume, and multi-view single objective light-sheet
microscopy. bioRxiv, page 2020.09.22.309229,
2020. Publisher: Cold Spring Harbor Labora-
tory Section: New Results.

[10] Bin Yang, Xingye Chen, Yina Wang, Siyu Feng,
Veronica Pessino, Nico Stuurman, Nathan H.
Cho, Karen W. Cheng, Samuel J. Lord, Lin-
feng Xu, Dan Xie, R. Dyche Mullins, Manuel D.
Leonetti, and Bo Huang. Epi-illumination
SPIM for volumetric imaging with high spatial-
temporal resolution. Nature Methods, 16(6):501–
504, 2019. Number: 6 Publisher: Nature Pub-
lishing Group.

[11] Zachary R. Fox, Steven Fletcher, Achille
Fraisse, Chetan Aditya, Sebastián Sosa-Carrillo,
Sébastien Gilles, François Bertaux, Jakob Ruess,
and Gregory Batt. MicroMator: Open and flex-
ible software for reactive microscopy. bioRxiv,
page 2021.03.12.435206, 2021. Publisher: Cold
Spring Harbor Laboratory Section: New Results.

[12] Peter T. Brown, Rory Kruithoff, Gregory J.
Seedorf, and Douglas P. Shepherd. Multicolor

16



structured illumination microscopy and quanti-
tative control of polychromatic coherent light
with a digital micromirror device. bioRxiv, page
2020.07.27.223941, 2020. Publisher: Cold Spring
Harbor Laboratory Section: New Results.

[13] Henry Pinkard, Nico Stuurman, Ivan E. Ivanov,
Nicholas M. Anthony, Wei Ouyang, Bin Li, Bin
Yang, Mark A. Tsuchida, Bryant Chhun, Grace
Zhang, Ryan Mei, Michael Anderson, Douglas P.
Shepherd, Ian Hunt-Isaak, Raymond L. Dunn,
Wiebke Jahr, Saul Kato, Loïc A. Royer, Jay R.
Thiagarajah, Kevin W. Eliceiri, Emma Lund-
berg, Shalin B. Mehta, and Laura Waller. Pycro-
manager: open-source software for customized
and reproducible microscope control. Nature
Methods, 18(3):226–228, 2021. Number: 3 Pub-
lisher: Nature Publishing Group.

[14] Caroline A. Schneider, Wayne S. Rasband, and
Kevin W. Eliceiri. NIH image to ImageJ: 25 years
of image analysis. Nature Methods, 9(7):671–675,
2012. Number: 7 Publisher: Nature Publishing
Group.

17


	Introduction
	Terminology

	High-level Overview
	Building blocks
	Initial Software Design Requirements
	Threading model

	Device Interface
	Basic
	Property
	Busy
	Device Discovery
	Device Hierarchy
	Sequencing and Hardware Synchronization

	Library Interface
	Device Types
	GenericDevice
	CameraDevice
	ShutterDevice
	StateDevice
	StageDevice
	XYStageDevice
	SerialDevice
	AutofocusDevice
	ImageProcessorDevice
	SignalIODevice
	MagnifierDevice
	SLMDevice
	GalvoDevice
	HubDevice

	MMCore Callback interface
	MMCore API and implementation
	Device management
	``Pass-through'' operations
	Core properties and default roles
	Grouping of properties
	Pixel sizes and affine transforms
	Caching
	Logging
	Configurations

	Discussion

